Week 12 - Wednesday

COMP 3100

= What did we talk about last time?
= Financial and economic planning

= Time value of money
«FE =P -(1+1r)"

Questions?

Project 4

Finishing Financial Planning

= What if you knew how much someone would pay you today and how much you could get paid in the
future and needed to compute the rate of return needed to make them match?

= This helps you look for another way to spend your money with a better interest rate

= Orit helps you understand the rate of return that a project provides
It's algebra, solve for r:

= EE=P-(1+1r)"

FTl

o= (1+nr)"
1

- (2
If you have multiple stages of costs and revenues, you'll need to do a binary search on rvalues:
1. Start with a minimum bound for rand a maximum bound for r
Guess the rate halfway between them
Run through the math on a previous slide to see what the net is
If it's too high, go back to Step 1 with the minimum and the midpoint as your range
If it's too low, go back to Step 1 with the midpoint and the maximum as your range
When the minimum and the maximum are close enough together (like 0.001%), you have a good estimate

oYW N

= Assume each sample point has a value (like the money associated with that outcome)
= The expected value is the value of each sample point multiplied by its probability

= It's the average value of everything, weighted by the probability that it happens
Example:

= You're playing roulette, always betting on black

= An American roulette wheel has 38 outcomes: 18 are red, 18 are black, and two are neither (o and
00)

= If you bet $1 on black:
You have an 18/38 chance of winning $1
You have a 20/38 chance of losing $1

18 20
" Expectedvalue=$1-——3%1-—~ —$0.05

= Thus, you'll win some and lose some, but on average, you'll lose about $0.05 each time they spin
the wheel

= Your company needs to install some free software

= There's a 20% chance that the installation will be effortless and cost
about $100 of worker time

= There's an 80% chance that the installation will be a huge pain and
cost about $8,000 of worker time

= Expected cost of the installation is:
0.20 - $100 + 0.80 - $8,000 = $20 + $6,400 = $6,420

= We can take the go-no go example and add probability to it

= We'll say that there's a 25% chance that the customer goes broke
after three years, ending the revenue we'd get (and also the costs)

= The table showing this outcome looks like this:

EI I N Y LTV KT A

0.00 -450000.00 0.00 -450000.00 -450000.00
1 100000.00 -80000.00 1.04 96153.85 -76923.08 19230.77
2 100000.00 -80000.00 1.0816 92455.62 -73964.50 18491.12
3 100000.00 -80000.00 1.124864 88899.64 -71119.71 17779.93
4 0.00 1.16985856 0.00 0.00 0.00
5 0.00 1.2166529024 0.00 0.00 0.00

277509.11 -672007.29 -394498.18

= The expected value
is0.75 -
$18,109.22 + 0.25 -
$ —394,498.18 =
$ —85,042.63

= This negative
expected value
means the project
will likely lose
money

The previous example covered only two different possibilities

There could be many possibilities, and each possibility might be broken down further into
sub-possibilities

In these situations, we can show the possibilities as a tree

Working from the bottom of the tree, we can determine the discounted present value of
each outcome

Then, we can weight these outcomes by their probabilities to get an overall expected
value

The following tree lets us understand the expected value of the cost of a project to
modify an open source product

= There's a 20% chance it will require only minor modifications i
q y 306000.00

= There's an 80% chance it will require major modifications 4ior Modifications
If major, there's a 60% chance it will require a specialized team
If major, there's a 40% chance it can use a general team

Major Modifications
0.80

-10000.00 -380000.00

Specialized Team General Team
0.2-$— 10,000 4+ 0.8 (0.6 - $ — 500,000 + 0.4 - $ — 200,000)) m
= $— 306,000

-500000.00 -200000.00

Scheduling

= Two weeks ago, we talked about effort estimation

= Effort estimation predicts the number of person-months needed
to do a project
Even if we had a perfect estimate of the amount of work to be
done, we would still have to take many things into account to
predict when the project will be done

How many people
Details of tasks

Task dependencies
Personnel capabilities

= Effort Eis given in person-days or person months
= Thus, time T could be given by the following equation where
N is the number of people:
T =E/N
= Unfortunately, this ideal equation is unlikely to work out for a
couple of reasons

= Some tasks are easy to split up, and others are not

= |f it takes 5 minutes to pump up a bicycle tire, you can'tdo it
100 times faster by using 100 people instead of one

= Small tasks can usually only be done by a single person at a
time

= Larger tasks generally obey the T=E [N rule, but there are
diminishing returns for large values of N

= Looking at the time to do individual tasks isn't enough
= Consider tasks A, B, and C with the following amounts of effort:

= A: 5 person-months
= B:3 person-months

= C: 4 person-months

= If we have three employees, one can work on each task

= If the tasks are independent, the project will take 5 months to do, and
tasks B and C can even run late without delaying the total project

= What if C requires B to be done and B requires A to be done?

= If any task is delayed, the whole project will be delayed
= We have to share work on each task

= Some developers are better than others

= This messes with the overall T=E/ Nrule

= Some developers have specialized in certain areas
= Atester might be great at testing but not so good at development
= Only one person on the team might have experience with GUIs

= As a consequence, it might not be possible to have multiple
people working on a given task, and one person might be needed
for two different tasks

= Agile methodologies supposedly improve these issues by trying to
make everyone work on everything and grow their skills

= We assume that

= We assume sma
= We assume a de
person hasthes

= This allows us to

we have a good estimate of the relationship
between effort and time

| tasks assigned to one person
nendency between two tasks if only one

<ills needed to do both
look at the problem of specific skillsets as the more

general problem of dependencies
= With these assumptions, we can organize our tasks by
duration and dependency

Task Duration Prerequisite
Number | (Days) Tasks

Dependency example

1 6
2 5 1
. 3 2 1
= The following example shows 14
4 6 1
tasks ; A 53
= The time for each task is given 6 1 4
= The prerequisite tasks that must 7 2 4
be done first are listed too £ 4 4
= Tasks are numbered so that higher 9 = :
10 , 6
number tasks are dependent on . 2 -
11 1 /i
lower number tasks
12 4 9, 10
13 2 6,11
14 1 12, 13

Task Subsequent
Number Tasks

Another view of the same tasks

1 2,3, 4
2 59
= The previous slide has all the information we need : .
= Butit's not displayed in a way that is helpful for 4 £ 7)€
every kind of analysis 5 10
= For example, it's hard to figure out how long the 6 10, 13
whole project will take 7 qel
= |t's also hard to identify critical tasks, the ones 3 11
that determine the minimum time for the project
= Another thing we want to see is slack (or float), > "
the amount of time non-critical tasks can slip 10 2
without delaying the project 11 13
= To therightis another view that shows which 12 14
tasks are dependent on a given task 13 14

[
~

= Gantt charts let us find total time, critical tasks, and float
times

= Tasks are represented as rectangles with length proportional to
duration

= Dependencies between tasks are arrows
= Time increases from left to right

= We put the task starts as early as possible, immediately after their
last prerequisite finishes

N

o H»~ W

Partial Gantt chart example

= The first five tasks from our earlier table have the following
characteristics
= Corresponding Gantt chart:

0 5 10 15 20

25
> Ti , w
"
1 6 -

1

1

1

2,3

~ O N U

2
3
4
5

Full Gantt chart

= Here is the full Gantt
chart

= People don't always
draw the arrows, but
we're doing so here to
be explicit

= Looking carefully at
the chart, it's clear
that the project will
take 24 days

N

O OO N O Uun &~ W

10
11
12
13
14

10

15

20

2

5
> Time

(0] 5 10 15 20 25)T|me
Critical tasks
3

= We can find the critical 4

tasks by working :

backward from the

task(s) with the latest 6

finish time 7
= Whichever of its o

predecessors have the

latest end time are also 9

critical 16
= If any of these are

delayed, the whole 11

project will be delayed 12

13
14

Slack time

= Non-critical tasks have
slack, an amount of time
they can slip by and still
not delay the project

= Horizontal arrows show
slack times:
= Task 3: 3 units
= Task 6: 2 units
= Task 7: 6 units

Tricky! It's 6 because that's
what's needed before a
critical task will be delayed

= Task 9: 5 units
= Task 13: 4 units

N

O o0 N O Uun »~ W

10

12
13
14

10

1 20 25
2 > Time

= Tools exist to make Gantt charts automatically from duration
and prerequisite data

= Such tools can identify critical tasks and slack times

= They're only as good as the input you give them

= They won't help you:

= Break your project into meaningful tasks
= Estimate how long those tasks take
= Come up with task prerequisites

= Computer scientists love to use computer science for

everything, even project management problems
= In addition to Gantt charts, similar information can be
represented using graphs

= Then, graph theory tools can be applied to the information
= These approaches are called critical path methods (CPM)

because they focus on making the critical path as short as
possible

= Animportant idea that critical path methods add to the mix s a
tradeoff between time and cost
= Each task has:

= A normal time that the task would take

= A crash time which is the fastest a task could possibly be done by
spending more resources

= A (usually linear) relationship between putting resources in and getting
the task done quicker
= By using linear programming, a technique for finding optimal
solutions to linear systems of equations, the cheapest way to
finish a project by a given deadline could be determined

= Maybe rushing Task 7 is worth the extra money but rushing Task 10 isn't

= The CPM we will talk about has nodes containing seven pieces
of information, written in a peculiar way

= |D:
= D:

= ES:
= EF:
= [S:
= [F:

= S:

Task identifier
Task duration
Earliest start time
Earliest finish time
Latest start time
Latest finish time
Slack

ES

LS

ID

EF

LF

Graph
showing
dependencies

4

> 12

14

13

= Every task with no prerequisite has an ES of o

= For a task with prerequisites, its ES is the maximum EF of all of
Its prerequisites

= Foreachtask, EF=ES+D

= Using these relationships, we can fill in the ES and EF for each
task, starting from those with no prerequisites and working
through the rest of the graph

11

Graph with
earliest start
and finish times

12

23

24

14

3
11 14
9
11 15
4 4
12 13 15 19 19 23
10 > 12
2
12 14 17 19
13
1
16 17

12

16

11

= Every task that isn't the prerequisite for anything hasan LF =
EF

= For atask that is the prerequisite for something, its LFis the
minimum LS of the tasks it’s a prerequisite for

= Foreachtask, LS=LF-D

= Using these relationships, we can fill in the LFand LS for each
task, starting from those that aren't the prerequisites for
anything and working through the rest of the graph

Graph with
all start and
finish times

23

24

23

14

24

3
11 11 14
9
11 16 19
11 15
11 15
4 4
12 13 15 19 19 23
10 12
14 15 15 19 19 23
8
11
2
12 14 17 19
13
18 20 21 23
1
12 16 17
11
14 - 6 20 21
16 20

= For each task, the slacktime S=LF-EF
= We can run through the graph and mark that as well
= Nodes with no slack are on the critical path

Final graph
with slack

11 11 14
9
11 16 19
11 15 5
11 15
4 4
12 13 15 19 19 23
10 12
14 15 15 19 19 23
8 2 o
11
2
12 14 17 19
13
18 20 21 23
1
6
12 16 17 ;
11
14 - 6 20 21
16 20 ;

1
23 24
14
23 24

0

= This approach clearly shows the relationship between tasks and
allows us to focus on the critical paths

= Managers might try to shorten the critical path by "crashing" it,
putting more resources on tasks with no slack

= The book doesn't mention it, but critical path tasks also have
drag, the amount by which they are delaying the project

= If no other tasks are done in parallel with the critical task, its drag is its
duration

= If other non-critical tasks are done in parallel, the drag is the minimum of
all of the parallel floats and the duration of the critical task

5 3 .
o1 = o Final graph
2 9
6 11 4 16 19 .
with slack and
Drag: 3 11 15 5
5
=7 [= drag
Drag: 4
1 4 4
12 13 15 19 19 23
6 10 » 12
6 2 14 15 15 19 19 23
0 6 8 2 ag: 4 Drag: 4 :
1 3 23 24
0] 9 11 5 5 14
Drag: 6 3 %3 24
12 , 14 17 1 19 Drag: 1
18 20 21 23
6 1
6 12 © 16 17 4
o 4 4 11
14 - 8 P 20 21
> 16 20 4

Upcoming

= Friday is a work day
= Next Monday:

= Execution and control

= Work on Project 4
= Read Chapter 15: Execution and Control for Monday

	COMP 3100
	Last time
	Questions?
	Project 4
	Finishing Financial Planning
	Internal rate of return
	Expected value
	Simple example with uncertainty
	Complex example with uncertainty
	Probability trees
	Scheduling
	Scheduling
	People
	Details of tasks
	Task dependencies
	Personnel capabilities
	Simplifying assumptions
	Dependency example
	Another view of the same tasks
	Gantt charts
	Partial Gantt chart example
	Full Gantt chart
	Critical tasks
	Slack time
	Gantt tools
	Critical path methods
	More on critical path
	Nodes in a CPM graph
	Graph showing dependencies
	Earliest start and finish times
	Graph with earliest start and finish times
	Latest start and finish times
	Graph with all start and finish times
	Slack
	Final graph�with slack
	Prioritization
	Final graph�with slack and drag
	Quiz
	Upcoming
	Next time…
	Reminders

