
Week 12 - Wednesday

 What did we talk about last time?
 Financial and economic planning
 Time value of money
 𝐹𝐹𝑛𝑛 = 𝑃𝑃 ⋅ 1 + 𝑟𝑟 𝑛𝑛

 What if you knew how much someone would pay you today and how much you could get paid in the
future and needed to compute the rate of return needed to make them match?
 This helps you look for another way to spend your money with a better interest rate
 Or it helps you understand the rate of return that a project provides

 It's algebra, solve for r:
 𝐹𝐹𝑛𝑛 = 𝑃𝑃 ⋅ 1 + 𝑟𝑟 𝑛𝑛

𝐹𝐹𝑛𝑛
𝑃𝑃

= 1 + 𝑟𝑟 𝑛𝑛

 𝑟𝑟 = 𝐹𝐹𝑛𝑛
𝑃𝑃

1
𝑛𝑛 − 1

 If you have multiple stages of costs and revenues, you'll need to do a binary search on r values:
1. Start with a minimum bound for r and a maximum bound for r
2. Guess the rate halfway between them
3. Run through the math on a previous slide to see what the net is
4. If it's too high, go back to Step 1 with the minimum and the midpoint as your range
5. If it's too low, go back to Step 1 with the midpoint and the maximum as your range
6. When the minimum and the maximum are close enough together (like 0.001%), you have a good estimate

 Assume each sample point has a value (like the money associated with that outcome)
 The expected value is the value of each sample point multiplied by its probability
 It's the average value of everything, weighted by the probability that it happens

 Example:
 You're playing roulette, always betting on black
 An American roulette wheel has 38 outcomes: 18 are red, 18 are black, and two are neither (0 and

00)
 If you bet $1 on black:

▪ You have an 18/38 chance of winning $1
▪ You have a 20/38 chance of losing $1

 Expected value = $1 � 18
38
− $1 � 20

38
≈ −$0.05

 Thus, you'll win some and lose some, but on average, you'll lose about $0.05 each time they spin
the wheel

 Your company needs to install some free software
 There's a 20% chance that the installation will be effortless and cost

about $100 of worker time
 There's an 80% chance that the installation will be a huge pain and

cost about $8,000 of worker time
 Expected cost of the installation is:

0.20 � $100 + 0.80 � $8,000 = $20 + $6,400 = $6,420

 We can take the go-no go example and add probability to it
 We'll say that there's a 25% chance that the customer goes broke

after three years, ending the revenue we'd get (and also the costs)
 The table showing this outcome looks like this:

n R C (1 + r)n R / (1 + r)n C / (1 + r)n Net

0 0.00 -450000.00 1.0 0.00 -450000.00 -450000.00

1 100000.00 -80000.00 1.04 96153.85 -76923.08 19230.77

2 100000.00 -80000.00 1.0816 92455.62 -73964.50 18491.12

3 100000.00 -80000.00 1.124864 88899.64 -71119.71 17779.93

4 0.00 1.16985856 0.00 0.00 0.00

5 0.00 1.2166529024 0.00 0.00 0.00

277509.11 -672007.29 -394498.18

 The expected value
is 0.75 �
$18,109.22 + 0.25 �
$ − 394,498.18 =
$ − 85,042.63

 This negative
expected value
means the project
will likely lose
money

 The previous example covered only two different possibilities
 There could be many possibilities, and each possibility might be broken down further into

sub-possibilities
 In these situations, we can show the possibilities as a tree
 Working from the bottom of the tree, we can determine the discounted present value of

each outcome
 Then, we can weight these outcomes by their probabilities to get an overall expected

value
 The following tree lets us understand the expected value of the cost of a project to

modify an open source product
 There's a 20% chance it will require only minor modifications
 There's an 80% chance it will require major modifications

▪ If major, there's a 60% chance it will require a specialized team
▪ If major, there's a 40% chance it can use a general team

 0.2 � $ − 10,000 + 0.8 � (0.6 � $ − 500,000 + 0.4 � $ − 200,000))
 = $ − 306,000

 Two weeks ago, we talked about effort estimation
 Effort estimation predicts the number of person-months needed

to do a project
 Even if we had a perfect estimate of the amount of work to be

done, we would still have to take many things into account to
predict when the project will be done
 How many people
 Details of tasks
 Task dependencies
 Personnel capabilities

 Effort E is given in person-days or person months
 Thus, time T could be given by the following equation where

N is the number of people:
𝑇𝑇 = 𝐸𝐸 / 𝑁𝑁

 Unfortunately, this ideal equation is unlikely to work out for a
couple of reasons

 Some tasks are easy to split up, and others are not
 If it takes 5 minutes to pump up a bicycle tire, you can't do it

100 times faster by using 100 people instead of one
 Small tasks can usually only be done by a single person at a

time
 Larger tasks generally obey the T = E / N rule, but there are

diminishing returns for large values of N

 Looking at the time to do individual tasks isn't enough
 Consider tasks A, B, and C with the following amounts of effort:
 A: 5 person-months
 B: 3 person-months
 C: 4 person-months

 If we have three employees, one can work on each task
 If the tasks are independent, the project will take 5 months to do, and

tasks B and C can even run late without delaying the total project
 What if C requires B to be done and B requires A to be done?
 If any task is delayed, the whole project will be delayed
 We have to share work on each task

 Some developers are better than others
 This messes with the overall T = E / N rule

 Some developers have specialized in certain areas
 A tester might be great at testing but not so good at development
 Only one person on the team might have experience with GUIs

 As a consequence, it might not be possible to have multiple
people working on a given task, and one person might be needed
for two different tasks

 Agile methodologies supposedly improve these issues by trying to
make everyone work on everything and grow their skills

 We assume that we have a good estimate of the relationship
between effort and time

 We assume small tasks assigned to one person
 We assume a dependency between two tasks if only one

person has the skills needed to do both
 This allows us to look at the problem of specific skillsets as the more

general problem of dependencies
 With these assumptions, we can organize our tasks by

duration and dependency

 The following example shows 14
tasks

 The time for each task is given
 The prerequisite tasks that must

be done first are listed too
 Tasks are numbered so that higher

number tasks are dependent on
lower number tasks

Task
Number

Duration
(Days)

Prerequisite
Tasks

1 6 -

2 5 1

3 2 1

4 6 1

5 4 2, 3

6 1 4

7 2 4

8 4 4

9 3 2

10 4 5, 6

11 1 7, 8

12 4 9, 10

13 2 6, 11

14 1 12, 13

 The previous slide has all the information we need
 But it's not displayed in a way that is helpful for

every kind of analysis
 For example, it's hard to figure out how long the

whole project will take
 It's also hard to identify critical tasks, the ones

that determine the minimum time for the project
 Another thing we want to see is slack (or float),

the amount of time non-critical tasks can slip
without delaying the project

 To the right is another view that shows which
tasks are dependent on a given task

Task
Number

Subsequent
Tasks

1 2, 3, 4

2 5, 9

3 5

4 6, 7, 8

5 10

6 10, 13

7 11

8 11

9 12

10 12

11 13

12 14

13 14

14 -

 Gantt charts let us find total time, critical tasks, and float
times
 Tasks are represented as rectangles with length proportional to

duration
 Dependencies between tasks are arrows
 Time increases from left to right
 We put the task starts as early as possible, immediately after their

last prerequisite finishes

 The first five tasks from our earlier table have the following
characteristics

 Corresponding Gantt chart:

Task Duration Prerequisites

1 6 -

2 5 1

3 2 1

4 6 1

5 4 2, 3

1

2

3

4

5

Time
0 5 10 15 20 25

 Here is the full Gantt
chart

 People don't always
draw the arrows, but
we're doing so here to
be explicit

 Looking carefully at
the chart, it's clear
that the project will
take 24 days

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0 5 10 15 20 25

 We can find the critical
tasks by working
backward from the
task(s) with the latest
finish time

 Whichever of its
predecessors have the
latest end time are also
critical

 If any of these are
delayed, the whole
project will be delayed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0 5 10 15 20 25

 Non-critical tasks have
slack, an amount of time
they can slip by and still
not delay the project

 Horizontal arrows show
slack times:
 Task 3: 3 units
 Task 6: 2 units
 Task 7: 6 units

▪ Tricky! It's 6 because that's
what's needed before a
critical task will be delayed

 Task 9: 5 units
 Task 13: 4 units

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0 5 10 15 20 25

 Tools exist to make Gantt charts automatically from duration
and prerequisite data

 Such tools can identify critical tasks and slack times
 They're only as good as the input you give them
 They won't help you:
 Break your project into meaningful tasks
 Estimate how long those tasks take
 Come up with task prerequisites

 Computer scientists love to use computer science for
everything, even project management problems

 In addition to Gantt charts, similar information can be
represented using graphs
 Then, graph theory tools can be applied to the information

 These approaches are called critical path methods (CPM)
because they focus on making the critical path as short as
possible

 An important idea that critical path methods add to the mix is a
tradeoff between time and cost

 Each task has:
 A normal time that the task would take
 A crash time which is the fastest a task could possibly be done by

spending more resources
 A (usually linear) relationship between putting resources in and getting

the task done quicker
 By using linear programming, a technique for finding optimal

solutions to linear systems of equations, the cheapest way to
finish a project by a given deadline could be determined
 Maybe rushing Task 7 is worth the extra money but rushing Task 10 isn't

 The CPM we will talk about has nodes containing seven pieces
of information, written in a peculiar way
 ID: Task identifier
 D: Task duration
 ES: Earliest start time
 EF: Earliest finish time
 LS: Latest start time
 LF: Latest finish time
 S: Slack

D

ES
ID

EF

LS LF

S

1

14

4

12

2

13

3

9

4

10

1

11

4

5

1

6

2

7

4

8

5

2

2

3

6

4

6

1

 Every task with no prerequisite has an ES of 0
 For a task with prerequisites, its ES is the maximum EF of all of

its prerequisites
 For each task, EF = ES + D
 Using these relationships, we can fill in the ES and EF for each

task, starting from those with no prerequisites and working
through the rest of the graph

1

23
14

24

4

19
12

23

2

17
13

19

3

11
9

14

4

15
10

19

1

16
11

17

4

11
5

15

1

12
6

13

2

12
7

14

4

12
8

16

5

6
2

11

2

6
3

8

6

6
4

12

6

0
1

6

 Every task that isn't the prerequisite for anything has an LF =
EF

 For a task that is the prerequisite for something, its LF is the
minimum LS of the tasks it’s a prerequisite for

 For each task, LS = LF - D
 Using these relationships, we can fill in the LF and LS for each

task, starting from those that aren't the prerequisites for
anything and working through the rest of the graph

1

23
14

24

23 24

4

19
12

23

19 23

2

17
13

19

21 23

3

11
9

14

16 19

4

15
10

19

15 19

1

16
11

17

20 21

4

11
5

15

11 15

1

12
6

13

14 15

2

12
7

14

18 20

4

12
8

16

16 20

5

6
2

11

6 11

2

6
3

8

9 11

6

6
4

12

8 14

6

0
1

6

0 6

 For each task, the slack time S = LF – EF
 We can run through the graph and mark that as well
 Nodes with no slack are on the critical path

1

23
14

24

23 24

0

4

19
12

23

19 23

0

2

17
13

19

21 23

4

3

11
9

14

16 19

5

4

15
10

19

15 19

0

1

16
11

17

20 21

4

4

11
5

15

11 15

0
1

12
6

13

14 15

2

2

12
7

14

18 20

6
4

12
8

16

16 20

4

5

6
2

11

6 11

0

2

6
3

8

9 11

3

6

6
4

12

8 14

2

6

0
1

6

0 6

0

 This approach clearly shows the relationship between tasks and
allows us to focus on the critical paths

 Managers might try to shorten the critical path by "crashing" it,
putting more resources on tasks with no slack

 The book doesn't mention it, but critical path tasks also have
drag, the amount by which they are delaying the project
 If no other tasks are done in parallel with the critical task, its drag is its

duration
 If other non-critical tasks are done in parallel, the drag is the minimum of

all of the parallel floats and the duration of the critical task

1

12
6

13

14 15

2
1

23
14

24

23 24

Drag: 1

4

19
12

23

19 23

Drag: 4

2

17
13

19

21 23

4

3

11
9

14

16 19

5

4

15
10

19

15 19

Drag: 4

1

16
11

17

20 21

4

4

11
5

15

11 15

Drag: 4

2

12
7

14

18 20

6
4

12
8

16

16 20

4

5

6
2

11

6 11

Drag: 3

2

6
3

8

9 11

3

6

6
4

12

8 14

2

6

0
1

6

0 6

Drag: 6

 Friday is a work day
 Next Monday:
 Execution and control

 Work on Project 4
 Read Chapter 15: Execution and Control for Monday

	COMP 3100
	Last time
	Questions?
	Project 4
	Finishing Financial Planning
	Internal rate of return
	Expected value
	Simple example with uncertainty
	Complex example with uncertainty
	Probability trees
	Scheduling
	Scheduling
	People
	Details of tasks
	Task dependencies
	Personnel capabilities
	Simplifying assumptions
	Dependency example
	Another view of the same tasks
	Gantt charts
	Partial Gantt chart example
	Full Gantt chart
	Critical tasks
	Slack time
	Gantt tools
	Critical path methods
	More on critical path
	Nodes in a CPM graph
	Graph showing dependencies
	Earliest start and finish times
	Graph with earliest start and finish times
	Latest start and finish times
	Graph with all start and finish times
	Slack
	Final graph�with slack
	Prioritization
	Final graph�with slack and drag
	Quiz
	Upcoming
	Next time…
	Reminders

